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We focus on a fully implicit, nonlinearly converged, solution of multimaterial
equilibrium radiation diffusion problems. The nonlinear method of solution is a
Newton—Krylov (generalized minimum residual, GMRES) method preconditioned
by a multigrid method. The multigrid iteration matrix results from a Picard-type
linearization of the governing equations. The governing equation is highly nonlinear
with the principal forms of nonlinearity found in the fourth-order dependence of
the radiation energy on temperature, the temperature dependence of the opacity, and
flux limiting. The efficiency of both the linear and nonlinear iterative techniques is
investigated. With the realistic time step control the solution of the linear system does
not scale linearly with multigrid as might be expected from theory. In contrast, we
find that the use of multigrid to precondition a Newton—Krylov (GMRES) method
provides a robust, scalable solution for the nonlinear system. Also only through
converging the nonlinearities within a time step does the solution method achieve its
design accuracy.
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1. INTRODUCTION

In a large number of applications radiation transport plays a key role. This includ
a variety of astrophysical phenomena, inertially confined fusion, combustion, and |
personic flow. Often a diffusion approximation is made assuming isotropy and a sn

1 This work was performed under the auspices of the U.S. Department of Energy by Los Alamos Natic
Laboratory under Contract W-7405-ENG-36.
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collisional mean free path of the transport. Integrating over all radiation energies (frequ
cies, i.e., a gray approximation) and assuming that the radiation energy is in equilibri
with the medium an equilibrium radiation description is found. We consider the integrati
of nonequilibrium radiation diffusion in [11].

Radiation diffusion is a highly nonlinear phenomenon. Despite this, the integration
the governing equation numerically is frequently accomplished with linearized PDEs wh
no attempt is made to converge the nonlinearities [2]. In addition to the simplicity of tt
approach there is a perception that effectively dealing with the nonlinearities with Newto
method is nearly intractable. Even with methods which deal with some of the nonlineariti
flux limiters are still used in a linearized fashion (i.e., the flux limiters are evaluated usi
explicit data) [2, 21]. Graziani and colleagues [1] have studied a variety of linear solve
including a conjugate gradient preconditioned by multigrid on realistic applications.

We should note that other authors have integrated the equations of radiation diffus
converging nonlinearities [5, 4]. D’Amico [5] defines several algorithms, including a su
cessive substitution method and a standard implementation of Newton’s method. D’Amic
work is further distinguished by its focus on nonequilibrium radiation transport with flu
limiting, but is only one-dimensional. Dai and Woodward [4] use a successive substitut
method in conjunction with a multigrid solver and a second-order temporal differencing

Our method converges the nonlinearities with a Newton-based method, but avoids
formation of the Jacobian matrix. Below we will introduce the physical problem with if
governing equation and associated constitutive relations. Next, we discuss our nonli
integration technique and the general properties of the numerical linear algebra used to
radiation diffusion problems. This work is based on our earlier work combining multilev
preconditioners with the Newton—Krylov method [10]. Here and in our previous paper, !
use the GMRES (generalized minimum residual method) [19, 20] as our Krylov meth
Finally, we show results that indicate that multimaterial problems, substantial amount:
nonlinearity, and flux-limited diffusion pose no significant limitations to this methoddlogy

2. DESCRIPTION OF THE PHYSICAL PROBLEM

Radiation diffusion can be posed in many forms. For instance, both the material tem|
ature and the radiation energy density can be considered unknowns. It is instructive to
with the equations of honequilibrium radiation diffusion where the energy equation is

0E c
— =V.(-VE)+c@T*=E) (1a)
ot 3k

and the material temperature equation is

oC, T
ot

=cx(E —aT?, (1b)

wherek is the opacitya is the Stefan—Boltzmann constant, ané the speed of light.
Here we focus on the simpler setting where the material temperature is in equilibrium v

2We note that portions of this work have been presented at the 3rd IMACS International Symposium
Iterative Methods in Scientific Computation, July 1997, in Jackson, Wyoming [16], and the 5th Copper Mount
Conference on Iterative Methods, April 1998, Copper Mountain, Colorado [17].
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the radiation energy density. If we assume that the temperature is in equilibrium with
radiation energyE = aT#*, and sum (1a) and (1b), the result is

d@T*+C,T c
g =V. _VaT4 ,
ot 3k

or the form we will use hereafter

Ia+ (1Q—a)C,E)E
ot

— V. (D(E)VE). @)

Here, the dependent variable can be viewed as having two important limits where
energy of the system is dominated by either the material energy or the radiation energy.
parametew is introduced to allow easy switching between limiting cases for the depende
variables. For simplicity we have chosen a set of units wkgre c=a=1. Next we will
define the nonlinearities in the diffusion coefficieBt= c/3«, as a nonlinear function of
E [22, 14].

The energy dependence bf is found through the dependence of the opacity of the
medium,, as a function of temperature. A common form for the temperature dependel
ofthe opacity isc o« 1/ T3 — D o T2. Further complications are imposed by multimaterial
problems where the opacity is a function of the atordiprf{umber of the medium (we choose
Z~3 for all examples here).

Flux-limited diffusion is introduced to prevent transport faster than the maximum speec
the medium (the speed of light here). With flux-limited diffusion coefficients, the function
form of D will include the gradient of the energy density. The earliest form is due t
Wilson [2] and contains the correct asymptotic behavior. As the gradients become si
the diffusion approximation (parabolic type of PDE) is recovered, while steep gradiel
recover a transport (hyperbolic type of PDE) form of the equation. Wilson’s form is

1
~ 1/D(T) + [VE|/E’

®3)

D,

The boundary conditions for the radiation diffusion are of a mixed form. Aside froi
symmetry conditions, we will also apply Milne or Robin (mixed) boundary conditions ¢
the form

Finc = 3D(T)VE + E,

whereF is a prescribed flux and each quantity is evaluated on the boundary. It is nota
that this boundary condition is a nonlinear function of the dependent variables.
Frequently, solutions to radiation diffusion problems involve sharp fronts known |
Marshak waves [22]. While the equations are posed as a nonlinear diffusion equat
their solutions can be thought of as a wave problem. Numerical stability conditions &
accuracy conditions may not be strongly related for this situation. As will be illustrated tt
condition manifests itself in the solutions and the numerical methods introduced below
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3. METHODS OF SOLUTION

3.1. Linearized Methods

For ease of presentation we will et 1 in the following discussion. An explicit scheme
can be defined by the forward Euler’'s method

EM! = E"+ AtV - D(T")VE",

with a (2-D) stability condition,

4D At

2 <1, 4)

where D At/ h? is the Fourier number (Fo) ards the mesh spacing (assumimg: Ax =
Ay). Of course, one can go on to define an explicit algorithm of any temporal order of :
curacy where stability is some multiple of the above condition. Unfortunately the stabilit
based time step is extremely restrictive, making an explicit integration impractical. F
thermore, as discussed earlier this stability condition may be poorly related to accur
requirements for the solution of the radiation diffusion equations.

A frequently used approach to solve (1) is a semi-implicit method. The semi-implit
method is defined by a simple linearization of (1) using old time variables and backw:
Euler’s method,

SE — AtV - D(T")VSE = AtV - D(T")VE", (5a)
E"! = E" + SE. (5b)

This method is unconditionally stable (linearly). While it is stable, it is not nonlinearl
converged, which can lead to inaccuracy for large time st&ps»> Atexpiicit- WWe note that
this form (5) is preferable to

E™ _ AtV - D(TMHVE™! = E, (6)

because of error propagation characteristics of nonlinear problems. Equation (6) is eqt
lent to (5) if the equations are solved exactly. If one forms an effective equation for the er
the nonlinear residual forms the right-hand side. With the form baséd&dhe nonlinear
residual goes to zero as the solution approaches a steady state while this is not tru
the later differencing form. One can also define a second-order (Crank—Nicolson/impl
midpoint rule) version of this scheme by replacing (5a) with

SE — IAtV . D(T")VSE = AtV - D(T)VE".

As discussed later in the paper, this method does not yield the expected results in te
of accuracy, but also does not exhibit spurious solutions that are evident when integra
the equation with a large time step size (much larger than the explicit stability limi
Explanations for each of these effects will be given.

Another important aspect of the integration of these equations is time step control. Hi
we employ a typical mechanism to accomplish this. The time step is estimated to pro
a solution that evolves within a prescribed bound for relative energy change. The choic
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an upper bound for this ratio is chosen and the time step is dynamically adjusted to n
this as a requirement. Functionally, the form of the measure is

|En+l _ Enl
= En+l + Eﬂoor’
whereEjqqr is a prescribed constant usually set equal to a multiple of the lower bound for
energy in a given problem. This quantity is evaluated everywhere on a grid and the lar

value found is used for time step control. A typical target valueforight be 0.10-0.20.
The discrete spatial operator used here is a five-point Laplacian,

Eijuj—Ej

1 Eij — Ei—1j
V- DMVE~ — [D(TH%,J-) Ax (Mg =% }
1 Eijs1—Eij Eij—Ej_
+ oy (DT B S o, ) SR @)
Ay e Ay e Ay

here we takeAx and Ay as constant on a given grid.

The evaluation of the diffusion coefficient has three components: the material-depent
terms, the temperature-dependentterm, and the flux limiting. Note, this division is depent
upon the simplifications used here and is not general. The material-dependent tert
evaluated using a harmonic mean,

D 2D;,i Dijy,j
i+3 T D . o
DI,J + D|+l,1
The dependence on the material present is taken sBtbaf —3. We can evoke flux limiting
with the form

1
D'—[Ei,i» Eiivj, Di+%,j]i+%,j =1 [Eisr; —Eijl °

Di+%_j %(E\,jJrEiJrLj)

Other flux limiters can be applied here, most notably the form given by Levermore a
Pomraning [12], without changing the basic linear or nonlinear algorithms as demonstre
in [11].

The form of the operator and the diffusion coefficient can have a profound impact
the linear algebra. Irrespective of the form of the diffusion coefficient, the linearized for
of V.-D(T)VE is symmetric positive definite. On the other hand, the Jacoliéw,-
D(T)VE)/9E, is nonsymmetric and as the temperature front becomes sharper (ne:
Marshak wave), can become indefinite.

3.2. Nonlinear Iteration Methods

The starting point for the development of our nonlinearly convergent methods is t
standard linearized solution introduced in the previous section. Itis this typical linearizat
which, if applied iteratively to the same time step, constitutes a Picard-type (or succes
substitution) nonlinear solver. Again, we note that several other works have introduced
method [5, 4]. Later, we show that this linearized solver forms the basis of the nonlin
preconditioning.
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For the Picard-type nonlinear solver the backward Euler time differencing is
8Ek+l — AtV - D(TnJrl’k)V(S Ek+1 — (En _ En+1,k) + AtV D(Tn+l‘k)VEn+1’k, (Sa)
En+l,k+1 — En+1,k + %-5 Ek+1 (8b)

wherek is the iteration index. For second-order time differencing using an implicit midpoi
rule (rather than Crank—Nicolson), the finite difference form is

1 Tn Tn+1,k
SEKL — EAW -D <+2> VSEKtL

" Tn+1,k =l En+l,k
:(En_ En+1,k)+AtV D( +2 >V< +2 >, (9a)
En+l,k+1 — En+1,k + S(S Ek+l' (gb)

In solving this equation we will refer to a nonlinear function that must be satisfied to sol
tolerence as

n n+1 n n+1
F(E““):(E”—E"+1)+Atv.D<T +2T )v(E +2E )

We employ an under-relaxation factodefined byt = min(1, 1/||§E/E]||) to robustly
deal with convergence difficulties often encountered during the early stages of a nonlir
iteration. Both of the nonlinear iteration methods considered are inexact [6]; we 0$e 1
times the current nonlinear residual to define the linear convergence tolerance. This li
the amount of work which is used to produce solutions that poorly approximate the nonlin
solution. Convergence within a time step is determined by the npFE)||», dropping
below 10°.

As we will see preconditioning is the heart of the problem, and the Picard solver sho
first (Algorithm 1) only differs from the Newton solver (Algorithm 2) in the matrix—vector
multiply (Step 2c).

ALGORITHM 1 (Multigrid Picard-Type Nonlinear Solver).

1. Start the nonlinear iteratiok = 0.
2. Compute the nonlinear residuak= —F (E).
(a) Startthe Krylov iterationto solv&SE =r, n=0. Initialize the Krylov vector with
Vpn=Trq.
(b) Compute the preconditioned Krylov vectdivi _1v, using a multigrid V-cycle to
approximate the solution ty, = vp. M " is the approximate inverse @.
(c) Perform the matrix—vector multiply through the operatign= Ayp.
(d) Complete the Krylov iteration (constructing a new Krylov vectgr,;) and com-
pute the Krylov convergence—if converged, exit; otherwise-n+ 1 and go
to (b).
3. Compute the (damped) update to the full nonlinear problem.
4. Check for nonlinear convergence—if converged, exit; otherviise,k +1 and go
to 2.

End Algorithm 1
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This algorithm forms the foundation of our more sophisticated algorithm. In other worc
a convergent nonlinear Picard-type iteration preconditions Newton's method. As will
seen shortly, the only difference between the two algorithms is the form of the matri
vector multiply used in the Krylov algorithm. Both methods use a multigrid preconditione
Krylov method as an inner iteration with different connections to the full nonlinear probler
In developing our method we build upon our earlier efforts to combine multigrid as
preconditioner for Newton—Krylov methods [10].

First, we define the nonlinear functions that are being solved,

ErH—l _ En

F(Eﬂ+1) — X _Vv. D(Tn+1)v ET'H—].

for the first-order method and

En+1 — En TN Tn+l EN En+l
FE")=———"-V.D * \Y +
At 2 2

for the second-order implicit midpoint rule. Our goal is to execute an inexact Newton itel
tion within a time step. The updates to the dependent variables are found by approxime
solving

J(EnJrl,k)a Ek+l — _F(En+l,k)’ (10)
wherek is the iteration index, and
En+1,k+1 — En+1,k + 58 Ek+l (11)

to solve F(E"*1) =0. J is the Jacobian of (E) whose elements are defined By, =

dF (Ei)/9E;. Toimplement a Krylov method we only need to represent the matrix—vect
product rather than explicitly represent the matrix. This allows the definition of the matri
free (Jacobian-free) algorithm [3] with an approximation,

_F(E+ev)—F(E)
- ,

Jv (12)

wherev is a Krylov vector and = p(1+ | E||) andp = 1078 here.
In order for this algorithm to be effective, a preconditioner must be employed. In tt
case we need to approximaié/ ~v which is done in two steps:

1. Approximately solve the linear systely =v, where we choos& as the linear
systemA from the Picard-type iteration with an approximate solution computed wit
a single multigrid V-cycle.

2. Approximate the Jacobian via

_F(E+ey)—F(E)
; .

v=Jy

Herey is referred to as a preconditioned Krylov vector. Symbolically, this can be compac
represented ad M v with M " referring to the approximate inversion accomplishec
with the multigrid V-cycle. The overall Newton—Krylov iteration takes the symbolic forn
(IM 1) (MSE) = —F(E), which is known as right preconditioning.
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The chief advantage of this method is that the actual Jacobian is never formed. |
element that is necessary for this approach to be successful is good preconditioning.
process should not be confused with the process of numerically approximating the elem
of the Jacobian via numerically evaluated (Frechet) derivatives.

To summarize, we apply the Picard-type linearization of the governing equation as
preconditioner. This is simultaneously the most important and subtle aspect of our metl
Despite the asymmetry and potential indefiniteness of the nonlinear system, the symm
positive definite preconditioner is used. In using this approximation, the only presence
the true Jacobian is found in the matrix-free matrix—vector product in the Krylov iteratic

Symbolically this algorithm can be stated in the following way:

ALGORITHM 2 (Newton—Krylov with Picard-Type Multigrid Preconditioning).

1. Start the nonlinear iteratiok= 0.
2. Compute the nonlinear residuak= —F (E).
(a) Startthe Krylov iteration to solvé E =r, n=0. Initialize the Krylov vector with
Vp="p.
(b) Compute the preconditioned Krylov vectd v, using a multigrid V-cycle to
approximate the solution ty, = vp,.
(c) Perform the matrix—vector multiply through the operatin=[F (E + €y,) —
F(E)]/e.
(d) Complete the Krylov iteration (constructing a new Krylov vectgt,;) and com-
pute convergence—if converged, exit; otherwise=n + 1 and go to (b¥.
3. Compute the (damped) update to the full nonlinear problem.
4. Check for nonlinear convergence—if converged, exit; otheniisek + 1 and go
to 2.

End Algorithm 2

The only difference between the Picard-type and Newton iteration is the matrix-fr
implementation of the GMRES algorithm in Newton’s method. Viewed in this light, th
matrix-free Newton’s method can be viewed as accelerating the convergence of the sin
Picard iteration. The convergence tolerance of the linear problem is adaptive on each |
linear step. We make note that we favor the use of GMRES because of its superior stat
properties [9].

We motivate the use of nonlinear solvers over the linearized solvers with a simple exam
In a one-dimensional domain we apply a flux to the boundaries=s andx =1. Atx =0
the boundary condition is

dE
1 1 1 04
At x =1 the boundary condition is
oE
1 1 1

The diffusion coefficient depends on the temperature cudix{y,) = T2, it is flux-limited,
anda = 0. The radiation energy is initially set equal to 1.

3 This is the step that distiquished Algorithm 2 from Algorithm 1 and is the heart of the matrix-free Krylc
method.
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FIG. 1. The one-dimensional Marshak wave problem used to demonstrate the accuracy of various nonli
iterative techniques. (a) Solutionstat 0.5 with At = 0.005. (b) Absolute error= 0.5 with At = 0.005.

Four methods are compared here: SI1, backward Euler semi-implicit; SI12, Crank—Nico
semi-implicit; NK1, backward Euler Newton—Krylov; and NK2, implicit midpoint Newton—
Krylov. Solutions are computed using a fixed time step (following an initial ramp fror
At=1x10"%; At can be seen in the figures) and compared-a0.5. The ramp in-
creases the time step by 4@ time step up to the final time step size. Figure 1 shows
comparison of the results using the largest time step size, and.tinerm of the error



MULTIGRID NEWTON-KRYLOV RADIATION DIFFUSION 173

I.OXIOOE T T T

1.0x10715

1.0x1072

1.0x10734 g 3

L2 Error

1.0x1074 e s
1.0x10755 - E

1.0x107¢ . .
0.0001 0.001 0.01

time step size

FIG. 2. Convergence of the solutions to the one-dimensional Marshak wave problem under time step
refinement.

(compared with a highly resolved solution using the second-order Newton—Krylov mett
with At =1 x 10~ and a tighter nonlinear convergence tolerancexflD-8). The conver-
gence rates for each of the four methods is given in Fig. 2. Clearly the nonlinearly conver
Newton’s method is superior when considering kheerror.

Perhaps more striking is the order of accuracy. Nonlinearly converged methods ach
something close to design accuracy. This is to say that the second-order Newton's me
achieves nearly second-order convergence, while the same discrete form chosen fo
semi-implicit method is only first-order accurate (marginally). Additionally, the secon
order solution methods do not manifest oscillatory behavior often present when time s
are significantly larger than the explicit stability limit (fart = 0.005 the time step size gives
Fo> 4000). Stronger conclusions can be drawn from nonequilibrium radiation diffusi
calculations [11] where the presence of the stiff source terms precludes even first-o
convergence from methods not enforcing nonlinear convergence. Based on these resul
will use the SI1 method for the semi-implicit method and the NK2 method for the nonline
solution.

3.3. Numerical Linear Algebra

The implicit simulation of radiation diffusion problems requires the solution of larg
systems of linear equations. To be practical, these solutions must be of an iterative na
The standard solution to this problem has been the incomplete Cholesky conjugate gra
(ICCG) algorithm introduced by Kershaw [8]. When introduced, ICCG was a significa
improvement over earlier numerical linear algebra algorithms (such as point relaxatior
ADI). Nevertheless, ICCG does not provide a scalable algorithm. As a grid is refined
asymptotic cost of solution scalesid$/? with ICCG for very poorly conditioned problems
(N is the number of degrees of freedom being solved for; later we will use the nobditjon
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wheres is the scaling exponent for the cost of the solution). For an introduction to Krylc
methods we recommend Saad’s book [19] and for Krylov methods and nonlinear meth
see Kelly’s book [7].

We will show results for three traditional Krylov subspace methods for linear pro
lems. These three methods are categorized by their preconditioning. The first is the ab
described ICCG, the second is the simpler diagonal scaled Jacobi preconditioning (SJ
and the third used four passes of a composite Jacobiiteration (CJCG). This composite J
iteration uses two different weights which provide optimal (idealized) smoothing for the tv
highest wavenumber error modes of the diffusion operator. These weights are success
one-half (damping the highest wavenumber on the grid) followed by one (damping the <
ond highest wavenumber) with this combination of weights comprising one iteration. \
have found this method to be as effective, and more computationally efficient than, ICC

When the system of linear equations is nonsymmetric as in the case of the Jacobiz
the governing equation, the conjugate gradient method must be replaced by a more ge
method. The general class of conjugate gradient-like methods is known as Krylov—subs;
methods. Among this class of methods the generalized minimum residual method (GMR
is among the most robust. The properties of GMRES make it advantageous for use a:
Krylov method here (conversely the properties of other methods such as CGS, BICGS
and other similar methods are problematic). The differences between GMRES and o
Krylov methods are amplified with the use of matrix-free Newton methods [9]. This
caused by the enforcement of orthonormality within GMRES and its finite terminatic
property (manifesting itself with improved computational stability). Additionally, GMRES
has the property of finite termination and is more robust as a consequence. This is 0
to some degree by the increased storage and work requirements imposed by GMRES
noted before, preconditioning the linear problem is essential for efficiency.

To overcome the less than optimal scaling, multigrid algorithms are employed since tl
theoretically scale linearly. Unfortunately, multigrid algorithms are often less robust th
Krylov methods. A way of overcoming this lack of robustness while still achieving scalir
is to use multigrid as a preconditioner. For a multigrid preconditioned conjugate gradi
method we use the acronym MGCG.

Our multigrid method was developed to be both simple and robust for multimaterial prc
lems [18, 15]. In keeping with these principles, we use simple piecewise constant interle
transfer operators and pointwise relaxation such as Jacobi or Gauss—Seidel iterations. C
grid equations are found through using control volume concepts to compute effective co
grid diffusion coefficients from the previous fine grid (the process is similar to that four
in [13]). While this multigrid is simple, its saving grace is that it is used to preconditio
a Krylov method. Previously, we have highlighted the degree to which the Krylov meth
returns this method to suitable robustness and scalability in severe circumstances [18,

The chief issues regarding the numerical linear algebra are its properties of efficienc
relative terms as well as the scalability. In terms of work and run time, the rough equivale
of the different methods was determined (empirically determined, on an UltraSparc 2-2
Sun0S 5.1, f77 compiler). For SJICG one iteration is normalized to one work unit. One CJ
iteration costsv4.5 SJCG iterations. One MGCG iteration cost8.5 SJCG iterations. For
ICCG the costis more complex because the algorithm has two distinct steps, and becau
the cost of the preparation for the preconditioning the algorithm is not competitive until t
number of iterations becomes large. ICCG will not be considered further in this paper. Ne
we will examine the efficiency, robustness, and scalability of the algorithms described abc
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4. RESULTS

In this section we will produce guantitative performance results for the methods
scribed above. First, using a semi-implicit method as a driver, the pure numerical lin
algebra scaling efficiency is examined for several problems incorporating different lev
of difficulty and nature of time step size control. Next, the nonlinear iterative methods w
be examined on the same set of problems used to interrogate the numerical linear «
bra. The cumulative result of these investigations will show that multigrid precondition
Newton—Krylov methods provide a route to highly accurate efficient numerical solutio
of multimaterial equilibrium radiation diffusion problems. Our goal is to develop methoc
for nonequilibrium radiation transport, but these simple models provide an adequate
bed for issues related to the solution of multidimensional nonlinear equations. Many of
principal issues present in the more complex models are represented here in the form c
nonlinearity of the opacity, flux limiting, and realistic time step control.

4.1. Problem Descriptions

To test the methods described above on multimaterial radiation physics we use a
problem exhibiting several important features. We use a set of regions with differing n
terial compositions, with a rectangle far< 0.5 andy < 0.5, Z = 20.0, another rectangle
for x > 0.75 andy < 0.25,Z = 1000, and a circle for/(x — 0.75)2 + (y — 0.752 < 0.15,

Z =50.0 andZ = 10.0 everywhere else (the overall domain i@ <1 and O<y <1).
The material geometry is shown in Fig. 3. The initial condition for each probldissl
everywhere.

Flux boundary conditions are applied to the left- and right-hand boundaries with t
upper and lower boundaries being symmetric. On the right bourfgiary: 0.25, and at the

Z=100

X

FIG. 3. A plot of the material topology for the radiation diffusion problems used in this paper. The atom
mass number<Z, are shown for each region.
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left-hand boundaryF,. = 2.5 x 10°. Again, the initial condition i€ = 1. Asymptotically,
these fluxes are chosen so that the energies at the boundary appsoa6hand 1 on the
left and right boundaries respectively.

To provide some breadth for our results we will work with three physical models ai
integrate the equations using two different time step controls. The multimaterial geome
of the problem provides a three orders of magnitude jump in diffusion coefficient withc
considering the dynamics of the temperature evolution because of the cubic dependen
the diffusion coefficient ofz. This geometry is common to each of the problems describe
next.

1. Model 1 (M1) has the smallest amount of nonlinearity using the energy model ],
and the diffusion coefficient depends on the temperature line@(lig) = E¥4=T. The
temperature differences here provide an additional order of magnitude in jump in the
fusion coefficient.

2. Model 2 (M2) has a large degree of nonlinearity using the temperature naog€ (
andC, = 1) with a cubic dependence of the diffusion coefficient on temperal(E) =
E%/4=T?3. With the fourth-order dependence of the flux on the dependent variable and
cubic dependence of the diffusion coefficient, another three orders of magnitude in potel
jump are provided.

3. Model 3 (M3) uses the energy model= 1), and the cubic temperature dependenc
for the diffusion coefficientD(E) = E¥*=T3, but the diffusion coefficient is also flux
limited using Wilson'’s limiter. The diffusion coefficient can exhibit three orders of magn
tude jumps with respect to its temperature dependence, and the flux limiting can change
type of PDE locally from parabolic to hyperbolic.

Time step control uses two valugs= 0.10 andy = 0.50 (y = 0.50 is larger than is typ-
ically applied in practice). Time steps are adjusted dynamically to attempt to achieve |
change in energy over a time step with the proviso that the time step not grow more t
10% over any one time stefoor is Set to 1 for all problems. In the range we explore in
this paper the time step size is roughly linear with respeet 8ased on our experience
the first-order accurate semi-implicit method will be five times more accurate-&t10
than aty = 0.50. The second-order Newton—Krylov method will have errors two orders «
magnitude smaller than the semi-implicit method;at 0.50 and those errors will be re-
duced by a factor of 25 gt=0.10. Two example calculations are shown in Fig. 4. M1's low
relative nonlinearity is contrasted with the large amount of nonlinearity in M2. The larg
amount of nonlinearity results in steeper fronts and generally more challenging numer
computations.

4.2. Numerical Linear Algebra Performance

First, we will examine the efficiency of the numerical linear algebra in idealized ar
more practical circumstances. Chief among our interests is the scaling of the work requ
to solve our problems as a function of grid resolution. As a measure of the scaling we \
display the number of linear iterations used in solving the problems defined above with
semi-implicit algorithm.

The linear system that is solved arises from the discretization of a diffusion equation
is symmetric positive definite. If on a sequence of grids the diffusion equation is solv
with a fixed Fourier number rather than a fixgdhe linear systems are (roughly) identical



1
>.‘ K i
0 T
0 1
X
lb y y T J T
> | (
0 T - \ .
0 1
X
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TABLE |
The Average Number of Iterations for the CICG
Method with a Fixed Fourier Number of 100

Grid Average iterations
32x 32 12.1
64 x 64 19.3
128x 128 23.1
Scaling exponent 1.233

except for the mesh spacing. In these circumstances, we expect multigrid to behave line
with Krylov—subspace methods behaving super-linearly.

Notably, the time step control offered by a fixedloes not yield equal Fourier numbers
on sequences of refined grids. With this formof time step control, the time step size beco
a roughly linear function of the mesh spacing. For a fixed Fourier number the time s
size is a quadratic function of the mesh spacing. Thus, for a fixede would expect the
Fourier number to follow AAX. In the results that follow, we report results in terms of a
scaling coefficients, wheres is determined by the power law fit of computational work
compared with the degrees of freedoNF(is proportional to the amount of work required
to solve this system of linear equations).

Below, we show the number of linear iterations used for M1 and a time step control giv
a fixed Fourier number. As expected, the multigrid algorithm scales lineagy1(014)
while the Krylov—subspace methods scale super-lineardy1.233) for a Fourier number
of 100 (100 times the explicit stability limit). For a small Fourier number the super-line
scaling is weak although for the larger Fourier numbers the super-linear scaling approa
the worst-case result®?2. These results are given in Tables | and II. Under these conditiol
the multigrid method provides a significant advantage over the conjugate gradient mett
As we will see this advantage is somewhat muted by applying a more realistic time s
control to the problem.

Next, the scaling of the diagonally scaled Jacobi preconditioned conjugate gradien
eration is examined. For M3, the results are displayed in Fig. 5. For the other moc
SJCG behaves similarly as the problem evolves although M3 exhibits the worst sca
behavior. In each case, the time step contnek 0.10, gives a super-linear scaling of
s=1.290-1.391 (see Table Ill). In the case where the looser time step conted,50,

TABLE Il
The Average Number of Iterations for the MGCG
Method with a Fixed Fourier Number of 100

Grid Average iterations
32x 32 5.60
64 x 64 5.73
128x 128 5.82
Scaling exponent 1.014

Note.The scaling coefficient shows rough correspondence
with the expected linear scaling.



TABLE 1l

The Average Number of Iterations for the SJCG Method withn =0.10

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 3.83 7.01 5.95
64 x 64 5.48 105 10.2
128x 128 8.57 16.2 17.6
Scaling exponent 1.290 1.302 1.391
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FIG. 5. Diagonal scaled Jacobi conjugate gradient’s iteration count on M3. In general, the scaling of
linear algebra solver is not favorable in an idealized or practical case. The large iteration count is evidence ©

weakness of the preconditioning. ¢a3= 0.10. (b)n = 0.50.
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TABLE IV
The Average Number of Iterations for the SICG Method withn =0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 6.77 26.5 12.5
64 x 64 12.3 46.8 27.3
128x 128 24.1 74.9 55.2
Scaling exponent 1.458 1.375 1.536

is used the scaling exponentincreases £91.375-1.536 (see Table IV). Thus, as the
grid is refined one can expect to pay a continually higher price for the linear algel
solution.

For the composite Jacobi preconditioning conjugate gradient, the scaling is slightly be
than that found for the diagonal Jacobi preconditioner. The temporal behavior of this solut
method is nearly identical to the diagonal Jacobi preconditioned method with much lo\
iteration counts. In each case, the time step conijrel(.10, gives a super-linear scaling for
the method with an exponest= 1.242—-1.365 (see Table V). In the case where the loose
time step controly = 0.50, is used the scaling exponent increases=td.361-1.505 (see
Table VI). These scalings are nearly the same as the diagonal scaled Jacobi and thus
of these methods will provide increasingly greater costs to the linear algebra as the gr
refined. For M3 the costs for large grid sizes (or 3-D) may become prohibitive. Based
work/CPU time considerations, the CJCG method is superior for M2 while being sligh
inferior for M1 and M3.

For a multigrid preconditioned conjugate gradient similar results can be given althot
the scaling exponents are slightly smaller. Figure 6 shows the behavior of this method or
problems used here in the worst light. The evolutionary behavior of the iteration count is k
terbehavedfor M1 and M2. Nonetheless,ke 0.50 case with M3 is most efficiently solved
with MGCG. Forp = 0.10, the exponerst= 1.142-1.248 and fof = 0.50, s=1.224-1.393
(see Tables VII and VIII). For the cases given here, the multigrid only results in grea
economy than the other methods for the loose time step control on M2 and M3 althol
it is competitive for all problems. Certainly, should the scaling hold under further gr
refinement, the multigrid method will be superior.

Because thelinear algebra problem being solved changes character asthe grids are re
the linear scaling characteristic of the multigrid is not found here. The conclusion is that
easier problems with a tight time step control, the multigrid can provide a significantly mc
scalable solution for the linear algebra problem. This can be seen in the light of the rela
cost of each iteration. Nonetheless, the multigrid solver does not provide a scalable solt

TABLE V
The Average Number of Iterations for the CJCG Method with np =0.10

Grid Average iterations M1 Average iterations M2  Average iterations M3
32x 32 1.34 1.96 1.79
64 x 64 1.76 2.96 2.83
128x 128 2.62 4.60 4.88

Scaling exponent 1.242 1.308 1.365
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TABLE VI
The Average Number of Iterations for the CJCG Method with iy = 0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 2.11 3.62 6.74
64 x 64 3.65 7.55 14.8
128x 128 7.25 12.4 19.7
Scaling exponent 1.419 1.361 1.505

when applied under these conditions. Ultimately, these costs will become exorbitant as ¢
are refined.

As noted earlier, in any case, the linear problems are becoming consistently different (
more difficult) as grids are refined with an energy-based time step control. A factor o
linear refinement provides an effective Fourier number that is twice that on the coarser ¢
Thus, the linear algebra problems approach the worst-case scaling in thakmit0.

The general scaling we see for the linear solvers is somewhat troubling, but as we
see there is hope for a more optimistic scaling. We would like to provide a prelude to
behavior we see with the nonlinear solvers. We note that the multigrid provides a sig
icantly improved residual reduction in its early iterations when compared to the Kryls
methods. The Krylov methods provide improved residual reduction late in their iterati
sequence. A comparison between the solvers is shown in Fig. 7a (for th838rid) and
the scaling for multigrid is shown in Fig. 7b. For nonlinear solvers the linear systems
solved less stringently early in the nonlinear iteration. For the efficiency of the nonline
solver (inexact Newton or successive substitution) the early time iterative behavior is m
important (note the % 102 relative tolerance used in the course of the nonlinear solutic
algorithm).

4.3. Nonlinear Solvers

In this section, we compare the performance of the Picard and Newton—Krylov algorith
on the same set of radiation diffusion problems. We will compare the linear and nonlin
iterations as a function of time as well as the average number of iterations to provid
measure of algorithmic efficiency.

The chief conclusion from the results given below are that as grids are refined,
Picard iteration does not scale (where the Newton—Krylov method does) and this |
of scaling leads to a rapid expansion of relative computational effort per grid point
the grid is refined. Furthermore, the Picard iteration is not reliable, functionally failir

TABLE VII
The Average Number of Iterations for the MGCG Method with 1 =0.10

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 1.35 1.56 2.00
64 x 64 1.84 2.22 2.73
128x 128 1.7 2.29 3.38

Scaling exponent 1.142 1.143 1.248




TABLE VIII
The Average Number of Iterations for the MGCG Method with n =0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 1.81 2.76 4.60
64 x 64 4.70 6.59 8.74
128x 128 2.86 4.93 8.50
Scaling exponent 1.336 1.224 1.393
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for more difficult physical problems. Neither of these failings make this iteration a po
preconditioner for the Newton—Krylov solver. We note that we might not expect grid scali
these circumstances as demonstrated in the previous section, but as we shall see the Ne
Krylov method recovers much of the linear scaling seemingly lost for the semi-impli
method’s linear solution using the same machinery.
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FIG. 8. Linear iterations with the Picard iteration on M3. ¢a=0.10. (b)n = 0.50.

The lack of robustness mentioned above relates to the solution of M2 where the Pic
iteration failed (or failed to converge in less than 50 nonlinear iterations). We present
results in terms of linear and nonlinear iterations as a function of time for M3 in Figs. 8 a
9. Most notably, the linear and nonlinear iteration counts are strongly correlated (furt
demonstrated by their similar scaling). M3 provides the method significant challenges
a good deal of temporal character where the problem is significantly more difficult ne
t =0.1 for then = 0.50 case. Each of these results has the following character: the num



MULTIGRID NEWTON-KRYLOV RADIATION DIFFUSION 185

a
e ———
10~
] i
o v L1 | 128x128
7)) ! v
g ...... _ ! Vi
g ’ f
i
qa i
~N
o
C LREAAS | T [ AL LAY LA | T LA RAAES RALAS AR RARAS RAAAS RAALS LAAES RARAS RALLE M
0 0.01 0.03 0.05 0.07 0.09
time
b
35 Tyt T T T T T 1 1 v o
] ' 32x32
30 J_.
] 1 64x64
] ] fiéxlzs
wn
=]
S
N
]
o
)
N
L
O- T T T T T T T T T
0 0.1 0.2 0.3 04 0.5

time

FIG. 9. Nonlinear iterations with the Picard iteration on M3. (a5 0.10. (b)n = 0.50.

of nonlinear iterations scales with an exponerg ef1.23 with the linear iterations closely
following this trend. This scaling exponent risesster 1.30 for  =0.50. Note that the
M1 results are much more favorable toward the Picard-type method as shown in Table
through XllI. This is likely due to the lower level of nonlinearity intrinsic in this model.
Nonetheless, the failure on M2 and the erratic behavior with M3 undermine the utility
the Picard-type nonlinear solver.

The nonlinear solver’s performance depends most critically on the choice of nonlini
solver rather than the linear iterative performance. The linear solver’s performance in
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TABLE IX
The Average Number of Linear Iterations for the Picard-Type
Method with n =0.10

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 3.05 — 3.26
64 x 64 3.38 — 4.09
128x 128 3.66 — 7.06
Scaling exponent 1.0668 — 1.278

Note.For M2 the method does not converge in under 50 nonlinear iterations.

TABLE X
The Average Number of Nonlinear Iterations for the Picard-Type
Method with n=0.10

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 4.05 — 4.26
64 x 64 4.38 — 5.69
128x 128 4.66 — 8.05
Scaling exponent 1.051 — 1.230

Note.For M2 the method does not converge in under 50 nonlinear iterations.

TABLE XI
The Average Number of Linear Iterations for the Picard-Type
Method with n =0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 3.61 — 5.43
64 x 64 4.70 — 9.75
128x 128 6.81 — 22.7
Scaling exponent 1.229 — 1.516

Note.For M2 the method does not converge in under 50 nonlinear iterations.

TABLE XII
The Average Number of Nonlinear Iterations for the Picard-Type
Method with n =0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 4.61 — 6.43
64 x 64 5.34 — 9.49
128x 128 6.12 — 147
Scaling exponent 1.103 — 1.298

Note.For M2 the method does not converge in under 50 nonlinear iterations.
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area of scalability is secondary, in thatit determines the amount of work to solution. One n
remember that the raw number of linear iterations must be minimized because the nur
of nonlinear function evaluations increases linearly with the number of linear iterations.
such we seek methods which minimize the linear iteration count (i.e., multigrid; one cy
is preferable and we want only enough work to meet our relative residual reduction criter

Having established the unreliability of Picard iterations in terms of solution robustness:
scalability, we now examine the Newton—Krylov iteration using this same Picard iterati
as a preconditioner. This is shown in Figs. 10 and 11 and Tables XIII through XVI. Fir:

32x32
64x64
128x128

w —

g 256x256

.5

=

=~

)

N

]

(1 | RAAAS AL RAMLY LARES RARLS RAALE RALAY LAEA) LAALY LAAAS LALLS RALL) RAbid LLLS RALLI RARLY LALLY LAAAS ]
0 001 0.03 0.05 0.07 0.09
time

32x32
64x64
128x128

7] —_

= 1 256x256

.5

=

S

>

N

o

time
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FIG. 11. Nonlinear iterations with the Newton—Krylov iteration on M3. (g3 0.10. (b)n = 0.50.

we note that the Newton—Krylov method successfully solves each problem (where Pic
fails outright on M2). More impressively, the Newton—Krylov iteration shows almost n
dependence on grid size for the nonlinear iteration count (the worst scabrg1051).

Nevertheless the overall scaling is lower than that seen for the linearized problem. (
obvious caveat is the larger overall number of iterations although if the scalings hold,
iteration count for the nonlinear case may win as the grid is further refined. Additional
the accuracy of the resulting solution using the second-order Newton—Krylov method |
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TABLE XIlI
The Average Number of Linear Iterations for the Newton—Krylov
Method with 77 =0.10

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 2.57 7.72 2.88
64 x 64 3.02 9.01 3.97
128x 128 3.40 104 5.70
256 x 256 3.39 11.0 7.74
Scaling exponent 1.0668 1.087 1.240
TABLE XIV

The Average Number of Nonlinear Iterations for the Newton—Krylov
Method with n=0.10

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 3.42 453 3.32
64 x 64 3.57 4.62 3.49
128x 128 3.71 4.66 3.74
256x 256 3.61 4.62 3.86
Scaling exponent 1.014 1.005 1.038
TABLE XV

The Average Number of Linear Iterations for the Newton—Krylov
Method with 7 =0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 3.35 14.3 4.71
64 x 64 3.96 15.2 6.61
128x 128 4.59 16.2 9.37
256x 256 5.34 17.5 12.8
Scaling exponent 1.111 1.048 1.242
TABLE XVI

The Average Number of Nonlinear Iterations for the Newton—Krylov
Method with 7 =0.50

Grid Average iterations M1  Average iterations M2  Average iterations M3
32x 32 3.42 5.29 3.66
64 x 64 3.63 5.37 3.97
128x 128 3.79 5.48 4.27
256 x 256 3.99 5.66 4.52

Scaling exponent 1.036 1.016 1.051
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been shown to be at least two orders of magnitude more accurate than the semi-imy
method (found using a comparable value;nf

The results show that the Newton—Krylov method does not exhibit a strong correlat
between the linear and nonlinear iteration count. Thus, one can expect the number of
linear iterations to be well behaved without regard to the linear solver’s iteration cou
This independence may account for much of Newton’s method’s relative robustness
the Picard iteration the linear and nonlinear iterations are closely correlated. Perhaps
most important difference can be seen by noting both the similarities between Figs. 8
10 showing linear iterations, while the nonlinear iterations shown in Figs. 9 and 11 «
different.

Perhaps this is attributable to the previously identified problem of using a time step con
that changed the effective Fourier number with grid size. We note that the energy ratio-beé
time step control provides a time step that is based on the physical character of the solt
in a heuristic sense. We further conjecture that this provides for a nonlinear problem on
sequence of grids that is intrinsically similar leading to the similar algorithmic behavic
For the purely linear problem, the linear system will more closely follow the character
a heat conduction problem, thus providing for the stronger dependence of the performs
on the effective Fourier number.

The bottom line is that the combination of multigrid preconditioning applied to the Pica
linearization and the Newton—Krylov method provides a scalable solution to this class
radiation diffusion problems using realistic time step control mechanisms. Furthermc
methods that converge on the intrinsic nonlinearities in the physics are capable of provic
number solutions with the naive theoretically expected rates of convergence. Just as i
tantly, the nonlinearly convergent methods allow one to achieve a design level of accur
temporally, thus opening the door for greater than first-order time accuracy.

5. CONCLUSIONS

In summary, multigrid Newton—Krylov methods appear to be attractive for nonline
initial value problems. The multigrid algorithm is critical to the efficient solution and usin
some sort of Krylov acceleration improves the robustness of the multigrid so that it can
used for this type of problem. Newton'’s method is significantly more efficient than a Pice
iteration in providing accurate nonlinear solutions for this problem. This difference is p:
ticularly acute when flux-limited diffusion is employed or the nonlinearity is of high orde

It is particularly notable that we can use a Picard linearization as the preconditio
for our nonlinear algorithm. This frees one from having to form the actual Jacobian
the governing equations at any time. A Picard-type linearization is the typically employ
discrete system solved in standard implementations. The only difference between a Pi
nonlinear solver and our Newton’s method is the presence of the matrix-free (and Jacok
free) Krylov algorithm. We feel that this flexibility allows a substantially simpler path tc
the construction of a Newton’s method for fairly general problems.
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